
Languages
are in the
Eye of the Beholder
Clemens Szyperski

Development Manager in Data Platform Group

Wirth 80 Symposium, ETH Zürich, February 2014

Driving your
own car,
anyone?
Having a chauffeur was
more than a luxury. It was a
necessity. So many things
could go wrong, requiring a
technician’s skills.

And it limited who could
afford to own and use a car.

Self-Service
Revolution

“The worldwide demand for cars will not
exceed one million – even if just for a
scarcity of available chauffeurs.”

Gottlieb Daimler, Inventor, 1901

Technology
Revolution

“… all large scale applications of LSI
*

chips
are by definition highly suspect. That does
away with ‘personal computing’, ‘home
computers’, ‘the information society’, and
all that jazz.”

Edsgar Dijkstra, 1978
(EWD691 “On improving the state of the art”)

* LSI = Large Scale Integration

As any technology matures,
capabilities that required
genius-level skills in one
generation become
common-place in the next.

Sticking to the
technology
status quo ?

“There is no reason for any individual to
have a computer in his home.”

Ken Olson, Founder and CEO of Digital Equipment Corp,
1977 at Convention of the World Future Society

DIY !
“A computer on every desk and in every
home.”

Bill Gates and Paul Allen, Microsoft Vision Statement, 1977

At work and at home.

* Do It Yourself

Programmer

Programmers write solutions (programs) in a
programming language.

 Requires intersection of programming skills
(how?) and domain knowledge (what?).

Programming languages themselves are the
subject of a design activity.

 Facts and opinions abound: usability,
expressiveness, correctness by construction,
readability vs. writability, simplicity, style, …

A person skilled in
designing and developing
programs.

The chauffeur of your
computer!

Properties of
Programming
Languages

 Read-Only Languages
 SQL (Structured Query Language) – many learn to

read SQL, only a few can write non-trivial SQL

 Write-Only Languages
 Pearl – many learn to write scripts, but most cannot

even read what they wrote themselves a day ago

 Impedance Mismatch
 “Ceremony” or lack of expressiveness force

cumbersome formulations of solutions in a given
problem domain

 Requirements Mismatch
 Functionally good expressions end up failing

expectations of performance, security, etc.

Tools need to match the
problem space, the
audience expected to use
the tool, and the
expectation space of the
desired outcome when
using the tool.

Law of the
Instrument

“I suppose it is tempting, if the only tool
you have is a hammer, to treat everything
as if it were a nail.”

Abraham Maslow, Psychologist, 1966

Programming
Languages

 Instructions can be very low-level
(close to the machine’s primitive
operations)

 Instructions can be very high-level
(close to the problem domain at
hand)

 Most languages strike a balance
 Too low-level (limited audience,

limited target machines)

 Too high-level
(limited audience, limited
problem domains)

Given a computer with
some primitive operations
and a problem to solve.

Formulate a composition of
instructions to the
computer that solve the
problem. Skills Interest Audience

Machine
Specific

Domain
Specific

“General
Purpose”

Programmer

Why not “drive” your own computer to go
where you want to go?

 This is not about “using” a computer application, in
the simple sense.

Why not write the programs you need to get
your job done, yourself?

 This is not about “programming” a computer
either, in the fullest sense.

Why not master a programming language?
 If the language is Abstract Algebra, you’ll be in

trouble. If it is Pidgin, you are in trouble too.

A person skilled in
designing and developing
programs.

The chauffeur of your
computer!

Self-Service
Programming

Query by Example
Moshé M. Zloof, IBM Research, mid-1970s

Generalizes to Programming by Example
 Using direct manipulation, change results of a

program, causing the system to adjust that
program.

Users can watch the effect on the underlying
program – and learn from that.

 Some users pick up ways to change their programs
directly, naturally learning the underlying
programming language.

 Requires uniform and simple languages.

Think of cars that most
people can learn to drive.

Clearly not to the limit of what
“cars” can be; think 18-wheeler
trucks or F1.

Audience-
Specific
Programming
Languages

 Languages that strive to be
“general purpose” end up being not
quite right at most anything.

 To compensate, such languages
develop a large arsenal of
specialized but overlapping
capabilities.

 The ideal maximized audience is
subdued by complexity.

 Larger audiences can be served
with simpler languages to either
side of the “general purpose” point.

Consider a variety of
personas that characterize
how groups of people get
their tasks done.

Consider a set of personas
that fall into comparable
needs/skills categories. Call
that an audience.

Skills Interest

Audience Complexity

Machine
Specific

Domain
Specific

“General
Purpose”

“Audience
Specific”

Anyone can
drive a car
Downside: everyone does
drive a car.

“The trouble with
programmers is that you can
never tell what a programmer
is doing until it’s too late.”

Seymour Cray

Anyone can
write a program
For a suitable set of
domains and requirements.

Example: Power Query, a
part of Microsoft Power BI,
aims at Excel users that
gather, combine, and
analyze data from a wide
variety of sources.

“M” - a simple
programming
language
Again, an example – the
Power Query Expression
Language (often referred to
as “M” for short).

Target audience is advanced Information
Workers (Analysts etc.), Data Stewarts

 Specifically, top 10% (ish) of Excel users

 Litmus test: benefits from today’s Excel formulas

 For that audience, the language should be
 Simple, easy to remember

 Easy to read and write; limited syntax, little use
of non-standard symbols

 Powerful; no cliffs for advanced user

 Wide range of “data models” (relational,
hierarchical, semi-structured, etc.)

Uniform simple
syntax
The syntax of a language
defines the form a valid
expression in that language
takes.

It does not, as such, define the
meaning of such an expression.

T-SQL

C# LINQ
syntax

C# LINQ
pattern

“M”

SELECT Orders.OrderDate, Products.OrderID, Products.ProductSKU
FROM Products
INNER JOIN Orders ON Products.OrderID = Orders.OrderID
ORDER BY ProductSKU ;

from p in Products
join o in Orders on p.OrderID equals o.OrderID
orderby p.ProductSKU
select new { o.OrderDate, p.OrderID, p.ProductSKU }

Products
.Join(Orders,

p => p.OrderID, o => o.OrderID,
(p, o) => new { o.OrderDate, p.OrderID, p.ProductSKU })

.OrderBy(p => p.ProductSKU)

let Joined = Table.Join(Products, "OrderID", Orders, "OrderID"),
Columns = Table.SelectColumns(Joined,

{"OrderDate", "OrderID", "ProductSKU"}),
Sorted = Table.Sort(Columns, "ProductSKU"),

in Sorted

Semantics
to meet
expectations &
requirements
The semantics of a language
defines the meaning of an
expression.

Semantics is defined relative to
the syntax of a language.

For a language to be “simple”,
its semantics should follow a
few uniform principles.

 Dynamic
 “M” programs only fail when reaching an invalid evaluation state

 Static checking, beyond syntax, is an option for tools

 Functional (mostly)
 Mostly deterministic: no direct side effects; mostly referentially

transparent; once calculated, all values are immutable

 External data is stream-processed (not necessarily buffered) and can
be non-repeatable; error handling can expose non-determinism

 Higher-order
 Functions, closures, and types are also values

 Nested application and conditionals as only forms of “control flow”

 Optionally typed
 Mostly optional yet expressive type system; very limited runtime

checking of types

No control-flow
primitives …
Say again?
Control flow in a programming
language directs the flow of
program execution based on
state observations.

Examples include constructs
for looping (iteration),
branching (case selection), and
even jumping (“goto”).

 “M” discourages explicit control flow (even recursion!) and prefers
higher-order application

 Many library functions take functions as arguments

Table.SelectRows(table, (row) => row[Manager] = row[Buddy])

Table.SelectRows is the name of
a function. If applied to a table

and a predicate, it returns a new
table with rows that meet that

predicate.

This function is higher-order; it
takes a function as its argument.

The second argument is a function
that takes a single row and determines

whether that row should be selected
(or dropped).

In the example, the predicate function
is anonymous; it has no name and is

defined right where it is needed.

Table.SelectRows(table, (row) => row[Manager] = row[Buddy])

Making the
most common
case simple
A common pattern is that
higher-order functions take
unary functions (single-
parameter functions) as
arguments.

Think items in a list, rows in a
table, fields in a record.

 “M” discourages explicit control flow (even recursion!) and prefers
higher-order application

 Many library functions take functions as arguments

 Often, those parameter functions are unary
 A special syntactic form helps construct unary function values

 An ‘each’ expression is just shorthand for a unary function
 The single parameter of an ‘each’ function is named _

 For conciseness, the _ can be omitted when accessing fields or
columns (this is the only case of syntactic finesse in M)

Table.SelectRows(table, (row) => row[Manager] = row[Buddy])

Table.SelectRows(table, each _[Manager] = _[Buddy])

Table.SelectRows(table, each [Manager] = [Buddy])

Evaluation
Model

 Expressions evaluate to values in a context
 The context binds names to values

 Function application is strict
 No Excel-style if(condition, true-expression, false-expression)

 “M” has an if-expression (the only admission to control flow)

 Evaluation is eager except for value construction
 Construction of structured values (records, lists, tables) is lazy

 Can deal with infinite lists and tables

 Can deal with partial records and lists
(values containing embedded errors only show when accessed)

 Evaluation ‘fails fast’ on hard errors
 Simple model to raise and handle soft errors within M

The evaluation model of a
language determines how
expressions are evaluated.

This can be seen as a
refinement of the
language’s semantics.

Streaming

 Resource adapters can expose data as streams
 The world at large is not transactional

 Streams appear as lists or tables in M
 Unlike regular values, streams are not necessarily repeatable

 List.Count(stream) may not coincide with the number of items
seen when exhausting the stream a second time, after counting it

 List.Buffer(stream) and Table.Buffer(stream) functions
take a stable snapshot of a stream

 “Memoizes” a copy of all items in the stream into memory, as the
underlying stream is enumerated

Evaluating data in a
streaming fashion allows
data to be processed as it
arrives (instead of waiting
for it to arrive completely).

Not all operations can be
streamed. For example, sorting
is a non-streaming operation.

Overall “M”
evaluation

 Users build up expressions step-by-step, in their natural order
 They draw on external resources when convenient

 They apply functions in any order that seems appropriate

 Copying external data entirely to local system is often unacceptable

 External resources support varying querying capabilities
 Importer for text files (incl. CSV and log files) does simple things to

avoid unnecessary string explosions

 XML and HTML importers can handle certain path queries

 Excel importer can handle simple framing queries

 OData feeds support more or less complete OData queries

 Access, SQL Server, Oracle, Teradata, etc. support SQL queries

 Just not the same SQL!

 LDAP queries over Active Directory, graph queries over Facebook,
item queries over Exchange, …

The main purpose of the
“M” system: Building a
bridge from the natural
expressions a user of “M”
writes and the execution
models that the diverse
world of data stores and
sources supports.

Query Folding
Example

 User applies functions
step-by-step

 System translates to
external and efficient
queries

SELECT Orders.OrderDate, Products.OrderID, Products.ProductSKU
FROM Products
INNER JOIN Orders ON Products.OrderID = Orders.OrderID
ORDER BY ProductSKU ;

let Joined = Table.Join(Products, "OrderID", Orders, "OrderID"),
Columns = Table.SelectColumns(Joined,

{"OrderDate", "OrderID", "ProductSKU"}),
Sorted = Table.Sort(Columns, "ProductSKU"),

in Sorted

Query Folding

 Expressions are built in user-preferred order

 The “M” system performs runtime analyses to determine how to
best break up (“fold”) an expression into subqueries that can be
federated to multiple resources

 Takes into account multiple dimensions, including estimates of set
sizes, statistics, connection latencies, query capabilities of
heterogeneous resources

 To inject runtime analysis, lazy value-construction is used to
aggregate expressions and defer evaluation of results until
demand arrives

 For individual lists and tables, this is similar to how LINQ works

 Also done through arbitrary M-defined functions (unlike LINQ)

 Streaming auto-adaptive join across multiple external sources

By deferring the
construction of result
values, an “M” system can
gather up operations until
results are demanded.

Gathered-up operations can
be translated (“folded”) into
external query expressions.

Power Query
Data Sources

 Web page

 Excel or CSV/PSV/… file

 XML file, JSON file

 Text file

 Folder

 SQL Server database

 Windows Azure SQL database

 Access database

 Oracle database

 IBM DB2 database

 Sybase database

 Teradata database

 MySQL database

 PostgreSQL database

 SharePoint list

 OData feed

 Azure blob and table store

 Hadoop Distributed File System
(HDFS)

 Windows Azure HDInsight (Azure
Blob Store mapping of HDFS)

 Windows Azure Marketplace
feeds and services

 Active Directory

 Facebook graphs

 Exchange

 SAP BOBJ soon

This list is continuously growing.

Key Takeaways

 Information Workers approach languages differently
 Aligning with Excel’s formula language is important

 Aligning with C idioms (a.k.a. C++, C#, Java, JavaScript idioms ) is
not a priority

 Avoiding symbolic or syntactic overload commonly found in
programming languages is important

 Information Workers need to solve their problems anyway
 Embracing diversity in scale, schematization, even ill-formedness

 Embracing “soft semantics” in transactional closure, repeatability,
and edge-case handling

 Creating a powerful yet simple language for the user
requires addressing some hard technical problems (ongoing …)

 Dynamic lazily-constructing language – how to deal with errors and
diagnostics?

 Runtime execution planning and federation – how to deal with “cliff”
surprises?

Still need a
driver, anyone?
Elevators and washing
machines have an
interesting thing in
common: they no longer
require a human operator.

And, yes, Google invented the
self-driving car. Not.

Resources

 Power Query has shipped in two versions
 Standalone (v1) shipped in July 2013

 Corporate (v2) shipped in February 2014

 Integrated part of Power BI offering, a subscription service aligned with
Office 365

 http://powerbi.com/

 Tutorials, samples, M language, and M library references
 http://office.microsoft.com/en-us/excel-help/microsoft-power-

query-for-excel-help-HA104003813.aspx

http://powerbi.com/
http://office.microsoft.com/en-us/excel-help/microsoft-power-query-for-excel-help-HA104003813.aspx

