
Stepwise refinement:	

From common sense	

to common practice

NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

ETH Zürich	

20 February 2014

Carroll Morgan

Niklaus Wirth 80th-Birthday Symposium

Although this talk is about Stepwise Refinement, and
the contribution it makes to software engineering, it is
not intended to suggest that Stepwise Refinement,
alone, is the ideal.

My personal view is that every person programs in his
or her own way, and that we (as teachers and as
researchers) can contribute to that by providing a
selection of conceptual tools, from which people can
choose and with which they can improve their
understanding and intellectual control of their own
programs however they might have been constructed.

Disclaimer

www.classification.gov.au

At the beginning of the 1970’s

Then, in 1971…

150 Niklaus Wirth

149Original Historic Documents

Niklaus Wirth

Program Development by
Stepwise Refinement

Communications of the ACM,
Vol. 14 (4), 1971

pp. 221-227

169Original Historic Documents

Stepwise Refinement

156 Niklaus Wirth

156 Niklaus Wirth

167Original Historic Documents

156 Niklaus Wirth

Improvement of pieces leads to
improvement of the whole

The 8
Queens
Problem

156 Niklaus Wirth

156 Niklaus Wirth

167Original Historic Documents

156 Niklaus Wirth

during that decade

kstra

Ja
ck

so
n

Hoare
Hehner

Many developments followed

Back

Jones… Meertens…
Hoare

non-determinism
as a specification tool

(stepwise) refinement
as a mathematical relation

Dijkstra

“Design your program as a
member of a family of programs
that it might have been.”

“…the open-endedness of stepwise refinement has
been achieved by introducing correctness of

refinement as a binary relation…”

Abrial

By 1980, two important ideas had emerged.

e.g. e.g.

… and many others.

Back

Jones… Meertens…
Hoare

non-determinism
as a specification tool

(stepwise) refinement
as a mathematical relation

Dijkstra

“Design your program as a
member of a family of programs
that it might have been.”

“…the open-endedness of stepwise refinement has
been achieved by introducing correctness of

refinement as a binary relation…”

Abrial

By 1980, two important ideas had emerged.

e.g. e.g.

… and many others.

Principles of the refinement relation

Legislative: How do you determine what
the rules of refinement should be?
!
Judicial: How do you determine whether
those rules have been followed?

The refinement relation is determined by a
vocabulary of (un)desirable observations, the terms
of reference.1

A specification S is refined by implementation I just
when every desirable observation that can be made
of S can be made of I also.

The terms of reference are determined by social,
legal and political concerns.

This is not mathematics.

Principles of refinement: judicial

1 Think of a judicial inquiry into whether implementation I meets its specification S.

legislative discussed later

A software business has as its primary goal to make
money for its owners. In order to do this (a corollary
thus) it must strive

1. to keep its customers happy, and
2. to stay out of court.

If the business does end up in court, it strives

3. to win the case.

How can the business hope to check every possible
observation within the ToR that the court will apply
(and over which ToR it has no control)?

Principles of refinement: a cynical view1

1 We are not however considering businesses that charge a fee to fix their own mistakes.

Use software-development practices that are
guaranteed to preserve all the desirable properties.

It’s common sense that this cannot be done by
enumeration of those properties: indeed there might
be infinitely many of them.

Instead you describe the properties, and ensure your
practices preserve every property so-described.

This is mathematics.1

Principles of refinement: common sense

1 You need a mathematician to tell you how to do this; but you do not need to be a
mathematician in order to follow her advice. You don’t need to be an aeronautical
engineer to fly an Airbus: a pilot’s (considerable) skills are of another kind.

The refinement relation is determined by a
vocabulary of undesirable observations…

A specification S is shown not to be refined by
kludge K just when an actual undesirable
observation of K has occurred in operation…1

…and it can be proved that such an observation
could never be made of S.2

Any (legal) means whatsoever can be used to
determine which tests might cause undesirable
behaviour. But they must actually be carried out.

Principles of refinement: seen negatively

1 Use a forensic specialist for this, an expert witness.
2 Use a mathematician for this, also an expert witness but of a different kind.

look at it the other way ’round

Above were opinions on achieving refinement and,
on the other hand, on refuting it “in court.”

But how are the refinement-defining terms of
reference determined in the first place?

There are two pressures, acting from either side: the
software business wants ToR that are cheap to
achieve; the customer wants ToR that protect her
from disappointment.

Usually these do not agree.

Judicial vs. legislative

ToR
customer analyst

Usually these do not agree.

Business ToR vs. client ToR

One might think that the business would strive for
weaker ToR (cheaper to achieve), and the customer
for stronger (more protection). But actually this is
not so. Weaker ToR’s are not necessarily easier to
achieve, at least for large projects.

A business using stepwise refinement will need
ToR’s that can be managed during that process, that
can be achieved piecewise and then maintained.

ToR
customer analyst

1980: from Milner’s CCS (actually a ToR for equality)

An intuitively appealing definition of observational
equivalence of concurrent processes is

ToR’s that were too weak: two examples

P ⇡ Q just when for all traces tr

P
tr) P 0

implies Q
tr) Q0

for some Q0 ⇡ P 0 ,
and vice versa.

But it does not follow that C (P) ≈ C (Q), if the
context C contains external choice.

Milner fixed this.

traces

ToR’s that were too weak: two examples

1983: related to Kozen’s PPDL (ToR for refinement)

An intuitively appealing definition of refinement
of probabilistic programs might be

But it does not follow that C (P)⊑C (Q), if the
context C contains nondeterministic choice.

P⊑Q just when for all preconditions pre and
postconditions post

 the probability that {pre} P {post}

 ≤ the probability that {pre} Q {post}.

Kozen side-stepped this.

Hoare triples

Stepwise refinement doesn’t work otherwise.
156 Niklaus Wirth

156 Niklaus Wirth

167Original Historic Documents

⊑

156 Niklaus Wirth

⊑

If this…

…and this…

…and this,

then also this.

All this is important because…

It should be possible to do this, in isolation

156 Niklaus Wirth

167Original Historic Documents

⊑

156 Niklaus Wirth 156 Niklaus Wirth

…without knowing about this.
156 Niklaus Wirth

156 Niklaus Wirth

167Original Historic Documents

It’s just common sense:
and the mathematics in
the background is only

a means to this end.

Compositional closure: a legislative technique

Determine by public consultation a relation ⋠ so
that “everyone agrees” that if S ⋠ K then K cannot
possibly be considered by any reasonable person to
be an implementation of S — for example

• S always terminates, but K can get into an infinite
loop, or

• S will never do trace tr, but K might or

• K is more likely to abort than S is.
!
The (complementary) relation ≼ does not have to be
preserved by context.

sequential

concurrent

probabilistic

1983: de Nicola, Hennessy

“is blatantly violated by”

Compositional closure: a legislative technique

Define P⊑Q so that

 If P⊑Q then C (P)≼C (Q) for all contexts C and

 If P⋢Q then C (P)⋠C (Q) for some context C.

That is, from ≼ and a description of all C ’s the
mathematicians find a ⊑ that the developers can use
so that

 If they do use it, their customers will be happy in
all contexts; and,

 If they don’t use it, there is a context in which a
customer will be unhappy.

Not too weak.

Not too strong. Just right:
and unique.

Compositional closure: a legislative technique

Define P⊑Q so that

 If P⊑Q then C (P)≼C (Q) for all contexts C and

 If P⋢Q then C (P)⋠C (Q) for some context C.

That is, from ≼ and a description of all C ’s the
mathematicians find a ⊑ that the developers can use
so that

 Follow the refinement rules, and your
implementation is safe in all contexts.

 Break the rules, and there is a context is which
your implementation breaks. Guaranteed.

Fast-forward to 2010

compositional
closure

30 years later

2010: No consensus.
• The chance of guessing the secret in one try must not

increase (Rényi min-entropy)?
• The Shannon-entropy of the secret must not

decrease?
• The average number of incorrect guesses must not

decrease?
• The number of guesses needed to have 50% chance

of being correct should not decrease?
• …

What should the ToR be for security?

This is security in the broad sense of “keeping data secret,” including e.g.
noninterference, and is more general than merely cryptography.

Use this one as the starting point ≼ ,

• The chance of guessing the secret in one try must not
increase (Rényi min-entropy),

since it’s agreed by the “public” to be reasonable; apply
compositional closure to synthesise from it a refinement
order ⊑ for quantitative information flow.

The mathematicians do the synthesis from C ; the
business never sees that synthesis. The business applies
the order ⊑; the customer never sees it being applied.

The customer ultimately is happy because of that order
she never sees, because the ≼ she does see is achieved.

Compositional closure of Rényi

Generalise the same order ≼
• The chance of guessing the secret in one try must not

increase (Rényi min-entropy),
in a way suggested by Landauer and Redmond’s Lattice of
Information,1 then formulate and investigate the so-called
Coriaceous Conjecture.2
The Paris procedure was different (from Sydney’s), not
guaranteed to produce a unique definition. And yet…
They obtained exactly the same order as had been found
in the southern hemisphere by unique synthesis.

Meanwhile, on the top half of the world
and independently

2 Try Googling the Coriaceous Conjecture.
1 From 1993: the generalisation of Lattice of Inf. was thus a 20-year-old problem.

A triumph of
common sense

Why do I claim they are not?

Principles that were articulated so clearly, so long ago,
are still guiding researchers today.

!
Why are they not guiding practitioners?

Why are they not common practice?

Most undergraduates “these days”…

• Can’t do static reasoning — actually, they

• Don’t even know what “static reasoning” means.

• Don’t understand abstraction as a concept (even if
they practise it accidentally).

• Don’t know what an invariant is.

and yet…

• are ecstatic if taught these ideas taught informally —
thus demonstrating (1) that indeed they did not know
them before, and (2) that they can learn them now.1

1 Google (In-)formal methods: the lost art.

The XXX of Programming

It’s more than a “lost art” — it’s a lost opportunity!

!
To a long line of ground-breaking texts,

!
!
!
!
!
add one more…

The Pain of Programming

Give the students exercises that they must struggle to
complete, and whose solutions will not satisfy them.
Make them suffer.

Only then give them the conceptual tools to do the
same job with pleasure, elegance and satisfaction.

These tools are not theories, formulae and proofs: they
are ways of thinking; and they can be taught initially
with natural language, pictures and informal reasoning.

Only if you put them in a position where they ask for
conceptual help with their programming, will they

appreciate what you give them.

Mathematicians synthesise refinement relations, and
discover software-development theories; but they (as a
rule) don’t have to apply them.

Programmers use those theories to build systems; but
they don’t have to create the theories themselves.

Clients use the systems that programmers create; but
they don’t have to know how they’re built.

From common sense to common practice:
the importance of who does what

Mathematicians discover theories.
!
Programmers use theories.
!
Customers benefit from theories.

From common sense to common practice:
the importance of who does what

Common practice? We can still succeed.

Even though it has been 43 years since Niklaus Wirth’s
paper (and the many other influential papers from that
time), it is not too late to make sure that everyone gets
the benefit that they convey: mathematicians,
programmers, customers.

Each role has different needs: don’t confuse them.

Condition our students in particular, who later become
our practitioners, to want to use we we know they
need… and only then show them how.

They will appreciate it — in the end.

When I was a boy of fourteen, my father was so
ignorant I could hardly stand to have the old man
around.

!
But when I got to be twenty-one, I was astonished at
how much he had learned in seven years.

It’s not easy…

Mark Twain: c19th American writer.

Kids “these days” think they know everything.

When I started learning about Stepwise Refinement,
my teachers were so ignorant that I could hardly stand
to go to lectures.

!
But by the end of the course I was astonished at how
much they had learned in those four years.

And yet it can be done.

It’s not easy…

Mark Twain: c19th American writer, adapted.

